
Appendix C  Internal Representation of Data Types C-1

APPENDIX C

Internal Representation of Data Types

This appendix contains the detailed internal representations of the PDS standard data types listed 
in Table 3.2 of the Data Type Definitions chapter of this document.

C.1 MSB_INTEGER

Aliases:   INTEGER, MAC_INTEGER, SUN_INTEGER
______________________________________________________________________________
MSB 4-byte integers:

* Bit 7 in i3 is used for the sign bit.
______________________________________________________________________________
MSB 2-byte integers:

* Bit 7 in i1 is used for the sign bit.
______________________________________________________________________________
MSB 1-byte integers:

* Bit 7 is used for the sign bit.
______________________________________________________________________________
Where:
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b0 - b3 =  Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, and b3).

i-sign  = integer sign bit

i0 - i3 = Arrangement of bytes in the integer, from lowest order to highest order.  The 
bits within each byte are interpreted from right to left, (e.g., lowest value  =bit 0, highest value = 
bit 7) in the following way:

4-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15
In i2, bits 0-7 represent 2**16 through 2**23
In i3, bits 0-6 represent 2**24 through 2**30

2-bytes:

In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-6 represent 2**8 through 2**14

1-byte:

In i0, bits 0-6 represent 2**0 through 2**6

All negative signed values are assumed to be twos-compliment.
____________________________________________________________________________

C.2 MSB_UNSIGNED_INTEGER

Aliases:MAC_UNSIGNED_INTEGER, SUN_UNSIGNED_INTEGER, 
UNSIGNED_INTEGER

_____________________________________________________________________________

MSB 4 byte unsigned integers:

______________________________________________________________________________
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MSB 2-byte unsigned integers:

______________________________________________________________________________

MSB 1-byte unsigned integers:

______________________________________________________________________________

Where:

b0 - b3 =  Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, and b3).

i0 - i3 = Arrangement of bytes in the integer, from lowest order to highest order.  The 
bits within each byte are interpreted from right to left, (e.g., lowest value  =bit 0, highest value = 
bit 7) in the following way:

4-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15
In i2, bits 0-7 represent 2**16 through 2**23
In i3, bits 0-7 represent 2**24 through 2**31

2-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15

1-byte:
In i0, bits 0-7 represent 2**0 through 2**7

______________________________________________________________________________
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C.3 LSB_INTEGER

Aliases: PC_INTEGER, VAX_INTEGER
______________________________________________________________________________
LSB 4-byte integers:

* Bit 7 in i3 is used for the sign bit.
______________________________________________________________________________
LSB 2-byte integers:

* Bit 7 in i1 is used for the sign bit.
______________________________________________________________________________
LSB 1-byte integers:

* Bit 7 in i1 is used for the sign bit.
______________________________________________________________________________

Where:
b0 - b3 = Arrangement of bytes as they appear when read from a file (e.g., read b0

first, then b1, b2, and b3).

i-sign  = integer sign bit

i0 - i3 = Arrangement of bytes in the integer, from lowest order to highest order.  The
bits within each byte are interpreted from right to left, (e.g., lowest value = 
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bit 0, highest value = bit 7) in the following way:

4-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15
In i2, bits 0-7 represent 2**16 through 2**23
In i3, bits 0-6 represent 2**24 through 2**30

2-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-6 represent 2**8 through 2**14

1-byte:
In i0, bits 0-6 represent 2**0 through 2**6

All negative signed values are assumed to be twos-compliment.
______________________________________________________________________________

C.4 LSB_UNSIGNED_INTEGER

Aliases:  PC_UNSIGNED_INTEGER, VAX_UNSIGNED_INTEGER
______________________________________________________________________________

LSB 4-byte unsigned integers:

______________________________________________________________________________
LSB 2-byte unsigned integers:

______________________________________________________________________________
LSB 1-byte unsigned integers:

______________________________________________________________________________
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Where:

b0 - b3 =  Arrangement of bytes as they appear when read from a file (e.g., read b0 first, then 
b1, b2, and b3).

i0 - 13 =Arrangement of bytes in the integer, from lowest order to highest order.  The bits 
within each byte are interpreted from right to left, (e.g., lowest value  =bit 0, highest value = bit 7) 
in the following way:

4-bytes:

In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15
In i2, bits 0-7 represent 2**16 through 2**23
In i3, bits 0-7 represent 2**24 through 2**31

2-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15

1-byte:

In i0, bits 0-7 represent 2**0 through 2**7
______________________________________________________________________________

C.5 IEEE_REAL

Aliases:  FLOAT, MAC_REAL, REAL, SUN_REAL

______________________________________________________________________________
IEEE 4-byte real numbers:

_____________________________________________________________________________
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IEEE 8-byte (double precision) real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.
_____________________________________________________________________________
IEEE 10-byte (temporary) real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.
_____________________________________________________________________________

Where:

b0 - b9 = Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, b3, etc.).

m-sign = Mantissa sign bit

int-bit   = In l0 byte reals only, the implicit "1" is actually specified by this bit.

e0 - e1  = Arrangement of the portions of the bytes that make up the exponent, from
lowest order to highest order.  The bits within each byte are interpreted from 
right to left, (e.g.,lowest value = rightmost bit in the exponent part of the

 byte, highest value = leftmost bit in the exponent part of the byte) in the
following way:

4-bytes (single precision):
In e0, bit 7 represents 2**0
In e1, bits 0-6 represent 2**1 through 2**7

Exponent bias = 127

8-bytes (double precision):
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In e0, bits 4-7 represent 2**0 through 2**3
In e1, bits 0-6 represent 2**4 through 2**10

Exponent bias = 1023

10-bytes (temporary):
In e0, bits 0-7 represent 2**0 through 2**7
In e1, bits 0-6 represent 2**8 through 2**14

Exponent bias = 16383

m0 - m7 = Arrangement of the portions of the bytes that make up the mantissa, from
highest order fractions to the lowest order fractions.  The order of the bits
within each byte progresses from left to right, with each bit representing a
fractional power of two, in the following way:

4 -bytes (single precision):
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23

8-bytes (double precision):
In m0, bits 3-0 represent 1/2**1 through 1/2**4
In m1, bits 7-0 represent 1/2**5 through 1/2**12
In m2, bits 7-0 represent 1/2**13 through 1/2**20
In m3, bits 7-0 represent 1/2**21 through 1/2**28
In m4, bits 7-0 represent 1/2**29 through 1/2**36
In m5, bits 7-0 represent 1/2**37 through 1/2**44
In m6, bits 7-0 represent 1/2**45 through 1/2**52

10-bytes (temporary):
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23
In m3, bits 7-0 represent 1/2**24 through 1/2**31
In m4, bits 7-0 represent 1/2**32 through 1/2**39
In m5, bits 7-0 represent 1/2**40 through 1/2**47
In m6, bits 7-0 represent 1/2**48 through 1/2**55
In m7, bits 7-0 represent 1/2**56 through 1/2**63

______________________________________________________________________________

These representations all follow the format:

1.  (mantissa) x 2** (exponent - bias)
with the "1." part implicit (except for the 10-byte temp real, in which the "1." part is actually stored 
in the third byte (b2)),
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In all cases, the exponent is stored as an unsigned, biased integer (e.g., exponent-as-stored - bias = 
true exponent value).
______________________________________________________________________________

C.6 IEEE_COMPLEX

Aliases:  COMPLEX, MAC_COMPLEX, SUN_COMPLEX

Two contiguous IEEE_REALs in memory, representing the real and imaginary parts.
______________________________________________________________________________

C.7 PC_REAL

Aliases:  None
______________________________________________________________________________
PC 4-byte real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.
______________________________________________________________________________
PC 8-byte (double precision) real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.
_____________________________________________________________________________

76543210 76543210 76543210 76543210

e1m0m1m2

b0 b1 b2 b3

m-signe0-bit

76543210 76543210 76543210 76543210

m3m5 e0m6

b0 b1 b2 b3

m-sign

76543210 76543210 76543210 76543210

m4 m2 m1 m0 e1

b4 b5 b6 b7



C-10 Appendix C  Internal Representation of Data Types

PC 10-byte (temporary) real numbers:

______________________________________________________________________________

Where:

b0 - b9 = Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, b3, etc.).

m-sign  = Mantissa sign bit

int-bit    = In 10 byte reals only, the implicit "1" is actually specified by this bit.

e0 - e1   = Arrangement of the portions of the bytes that make up the exponent, from
lowest order to highest order.  The bits within each byte are interpreted from
right to left, (e.g., lowest value = rightmost bit in the exponent part of the
byte, highest value = leftmost bit in the exponent part of the byte) in the
following way:

4-bytes (single precision) :
In e0, bit 7 represents 2**0
In e1, bits 0-6 represent 2**1 through 2**7

Exponent bias = 127

8-bytes (double precision) :
In e0, bits 4-7 represent 2**0 through 2**3
In e1, bits 0-6 represent 2**4 through 2**10

Exponent bias = 1023

10-bytes (temporary):
In e0, bits 0-7 represent 2**0 through 2**7
In e1, bits 0-6 represent 2**4 through 2**10
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Exponent bias = 16383

m0 - m7 = Arrangement of the portions of the bytes that make up the mantissa, from
highest order fractions to lowest order fractions.  The order of the bits within
each byte progresses from left to right, with each bit representing a
fractional power of two, in the following way:

4-bytes (single precision) :
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23

8-bytes (double precision) :
In m0, bits 3-0 represent 1/2**1 through 1/2**4
In m1, bits 7-0 represent 1/2**5 through 1/2**12
In m2, bits 7-0 represent 1/2**13 through 1/2**20
In m3, bits 7-0 represent 1/2**21 through 1/2**28
In m4, bits 7-0 represent 1/2**29 through 1/2**36
In m5, bits 7-0 represent 1/2**37 through 1/2**44
In m6, bits 7-0 represent 1/2**45 through 1/2**52

10-bytes (temporary) :
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23
In m3, bits 7-0 represent 1/2**24 through 1/2**31
In m4, bits 7-0 represent 1/2**32 through 1/2**39
In m5, bits 7-0 represent 1/2**40 through 1/2**47
In m6, bits 7-0 represent 1/2**48 through 1/2**55
In m7, bits 7-0 represent 1/2**56 through 1/2**63

______________________________________________________________________________

These representations all follow the format:

1.  (mantissa) x 2**(exponent - bias)

with the "1." part implicit (except for the 10-byte temp real, in which the "1." part is actually stored 
in the third byte (b2)),

In all cases, the exponent is stored as an unsigned, biased integer (e.g., exponent-as-stored -
bias=true exponent value).

______________________________________________________________________________
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C.8 PC_COMPLEX

Aliases:  None

Two contiguous PC-REALs in memory, representing the real and imaginary parts.
______________________________________________________________________________

C.9 VAX_REAL, VAXG_REAL

Aliases:  VAX_DOUBLE (for VAX_REAL only, none for VAXG_REAL)
______________________________________________________________________________
VAX F-type 4-byte real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.
______________________________________________________________________________
VAX D-type 8-byte real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.
______________________________________________________________________________
VAX G-type 8-byte real numbers:

______________________________________________________________________________
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VAX H-type 16-byte real numbers:

_____________________________________________________________________________
Where:

b0 - b15 = Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, b3, etc.).

m-sign   = Mantissa sign bit

e0 - e1    = Arrangement of the portions of the bytes that make up the exponent, from
lowest order to highest order.  The bits within each byte are interpreted from
right to left, (e.g., lowest value= rightmost bit in the exponent part of the
byte, highest value = leftmost bit in the exponent part of the byte) in the
following way:

4-bytes (F-type, single precision) :
In e0, bit 7 represents 2**0
In e1, bits 0-6 represent 2**1 through 2**7

Exponent bias = 129

8-bytes (D-type, double precision) :
In e0, bit 7 represents 2**0
In e1, bits 0-6 represent 2**1 through 2**7

Exponent bias = 129

8-bytes (G-type, double precision) :
In e0, bits 4-7 represent 2**0 through 2**3
In e1, bits 0-6 represent 2**4 through 2**10

Exponent bias = 1025
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16-bytes (H-type) :

In e0, bits 0-7 represent 2**0 through 2**7
In e1, bits 0-6 represent 2**8 through 2**14

Exponent bias = 16385

m0 -m13 = Arrangement of the portions of the bytes that make up the mantissa, from
highest order fractions to lowest order fractions.  The order of the bits within
each byte progresses from left to right, with each bit representing a
fractional power of two, in the following way:

4-bytes (F-type, single precision) :
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23

8-bytes (D-type, double precision) :
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23
In m3, bits 7-0 represent 1/2**24 through 1/2**31
In m4, bits 7-0 represent 1/2**32 through 1/2**39
In m5, bits 7-0 represent 1/2**40 through 1/2**47
In m6, bits 7-0 represent 1/2**48 through 1/2**55

8-bytes (G-type, double precision) :
In m0, bits 3-0 represent 1/2**1 through 1/2**4
In m1, bits 7-0 represent 1/2**5 through 1/2**12
In m2, bits 7-0 represent 1/2**13 through 1/2**20
In m3, bits 7-0 represent 1/2**21 through 1/2**28
In m4, bits 7-0 represent 1/2**29 through 1/2**36

‘ In m5, bits 7-0 represent 1/2**37 through 1/2**44
In m6, bits 7-0 represent 1/2**45 through 1/2**52

16-bytes (H-type) :
In m0, bits 7-0 represent 1/2**1 through 1/2**8
In m1, bits 7-0 represent 1/2**9 through 1/2**16
In m2, bits 7-0 represent 1/2**17 through 1/2**24
In m3, bits 7-0 represent 1/2**25 through 1/2**32
In m4, bits 7-0 represent 1/2**33 through 1/2**40
In m5, bits 7-0 represent 1/2**41 through 1/2**48
In m6, bits 7-0 represent 1/2**49 through 1/2**56
In m7, bits 7-0 represent 1/2**57 through 1/2**64
In m8, bits 7-0 represent 1/2**65 through 1/2**72
In m9, bits 7-0 represent 1/2**73 through 1/2**80
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In m10, bits 7-0 represent 1/2**81 through 1/2**88
In m11, bits 7-0 represent 1/2**89 through 1/2**96
In m12, bits 7-0 represent 1/2**97 through 1/2**104
In m13, bits 7-0 represent 1/2**105 through 1/2**112

______________________________________________________________________________

These representations all follow the format:

1. (mantissa) x 2**(exponent - bias)

with the "1." part implicit

In all cases, the exponent is stored as an unsigned, biased integer (e.g., exponent-as-stored 
- bias = true exponent value).
______________________________________________________________________________

C.10 VAX_COMPLEX, VAXG_COMPLEX

Aliases:  None

Two contiguous VAX_REALs or VAXG_REALs in memory, representing the real and imaginary 
parts.
______________________________________________________________________________

C.11 MSB_BIT_STRING

Aliases:  BIT_STRING
______________________________________________________________________________
MSB n-byte bit strings:

As read from a file: 

No byte swapping is needed.
Note:  for n-byte bitstrings, continue pattern above.
______________________________________________________________________________

MSB 2-byte bit strings:

76543210 76543210 76543210 76543210

bits
1-8

b0 b1 b2 b3

bits
9-16

bits
17-24

bits
25-32

bits
((nx8)-7) - (nx8)

b x (n-1)

. . .
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As read from file:

No byte swapping is needed.
______________________________________________________________________________

MSB 1-byte bit strings:

As read from file:

No byte swapping is needed.
______________________________________________________________________________

Where:

b0 - b3 =Arrangement of bytes as they appear when read from a file (e.g., read b0 first, then 
b1, b2, and b3).

The bits within a byte are numbered from left to right:

______________________________________________________________________________

C.12 LSB_BIT_STRING

Aliases:  VAX_BIT_STRING
______________________________________________________________________________
LSB 4-byte bit strings:

76543210 76543210

bits
1-8

b0 b1

bits
9-16

76543210

bits
1-8

b0

76543210

bit 8bit 1
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As read from a file:

After bytes are swapped:

______________________________________________________________________________
LSB 2-byte bit strings:

As read from a file:

After bytes are swapped:

______________________________________________________________________________
LSB 1-byte bit strings:

As read from file:

No byte swapping is needed.
______________________________________________________________________________

76543210 76543210 76543210 76543210

bits
25-32

b0 b1 b2 b3

bits
17-24

bits
9-16

bits
1-8

76543210 76543210 76543210 76543210

bits
1-8

b3 b2 b1 b0

bits
9-16

bits
17-24

bits
25-32

76543210 76543210

bits
9-16

b0 b1

bits
1-8

76543210 76543210

bits
9-16

b0b1

bits
1-8

76543210

b0

bits
1-8
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Where:

b0 - b3  =Arrangement of bytes as they appear when read from a file (e.g., read b0 first, 
then b1, b2, and b3).

The bits within a byte are numbered from left to right:

_____________________________________________________________________________

76543210

bit 8bit 1


